134 research outputs found

    Structural basis for bifunctional peptide recognition at human δ-opioid receptor

    Get PDF
    Bi-functional μ- and δ- opioid receptor (OR) ligands are potential therapeutic alternatives to alkaloid opiate analgesics with diminished side effects. We solved the structure of human δ-OR bound to the bi-functional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt(1)-Tic(2)-Phe(3)-Phe(4)-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt(1) and Tic(2). The observed receptor-peptide interactions are critical to understand the pharmacological profiles of opioid peptides, and to develop improved analgesics

    Crystallizing membrane proteins using lipidic mesophases

    Get PDF
    peer-reviewedThis paper was obtained through PEER (Publishing and the Ecology of European Research) http://www.peerproject.euA detailed protocol for crystallizing membrane proteins that makes use of lipidic mesophases is described. This has variously been referred to as the lipid cubic phase or in meso method. The method has been shown to be quite general in that it has been used to solve X-ray crystallographic structures of prokaryotic and eukaryotic proteins, proteins that are monomeric, homo- and hetero-multimeric, chromophore-containing and chromophore-free, and α-helical and β-barrel proteins. Its most recent successes are the human engineered β2-adrenergic and adenosine A2A G protein-coupled receptors. Protocols are provided for preparing and characterizing the lipidic mesophase, for reconstituting the protein into the monoolein-based mesophase, for functional assay of the protein in the mesophase, and for setting up crystallizations in manual mode. Methods for harvesting micro-crystals are also described. The time required to prepare the protein-loaded mesophase and to set up a crystallization plate manually is about one hour

    Allosteric sodium in class A GPCR signaling

    Get PDF
    Despite their functional and structural diversity, G protein-coupled receptors (GPCRs) share a common mechanism of signal transduction via conformational changes in the seven-transmembrane (7TM) helical domain. New major insights into this mechanism come from the recent crystallographic discoveries of a partially hydrated sodium ion that is specifically bound in the middle of the 7TM bundle of multiple class A GPCRs. This review discusses the remarkable structural conservation and distinct features of the Na+ pocket in this most populous GPCR class, as well as the conformational collapse of the pocket on receptor activation. New insights help to explain allosteric effects of sodium on GPCR agonist binding and activation, and sodium’s role as a potential co-factor in class A GPCR function

    Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody

    Get PDF
    Highly selective monoclonal antibodies recognizing the extracellular 3D epitope of G protein-coupled receptors represent valuable tools for elucidating receptor function and localization in the cell and show promise for a range of therapeutic applications. Here we present the structure of a complex between the human serotonin 2B receptor, captured in an active-like state, and an antibody Fab fragment, bound to the extracellular side of the receptor. The structure uncovers the mechanisms of receptor activation and of extracellular receptor recognition by antibodies

    Molecular control of δ-opioid receptor signalling

    Get PDF
    Opioids represent widely prescribed and abused medications, although their signal transduction mechanisms are not well understood. Here we present the 1.8Å high-resolution crystal structure of the human δ-opioid receptor (δ-OR), revealing the presence and fundamental role of a sodium ion mediating allosteric control of receptor functional selectivity and constitutive activity. The distinctive δ-OR sodium ion site architecture is centrally located in a polar interaction network in the 7-transmembrane bundle core, with the sodium ion stabilizing a reduced agonist affinity state, and thereby modulating signal transduction. Site-directed mutagenesis and functional studies reveal that changing the allosteric sodium site residue Asn131 to alanine or valine augments constitutive arrestin-ergic signaling. Asp95Ala, Asn310Ala, and Asn314Ala mutations transform classical δ-opioid antagonists like naltrindole into potent β-arrestin-biased agonists. The data establish the molecular basis for allosteric sodium ion control in opioid signaling, revealing that sodium-coordinating residues act as “efficacy-switches” at a prototypic G protein-coupled receptor

    Structure of the human smoothened receptor bound to an antitumour agent

    Get PDF
    The smoothened (SMO) receptor, a key signal transducer in the Hedgehog (Hh) signaling pathway is both responsible for the maintenance of normal embryonic development and implicated in carcinogenesis. The SMO receptor is classified as a class Frizzled (class F) G protein-coupled receptor (GPCR), although the canonical Hh signaling pathway involves the transcription factor Gli and the sequence similarity with class A GPCRs is less than 10%. Here we report the crystal structure at 2.5 Å resolution of the transmembrane domain of the human SMO receptor bound to the small molecule antagonist LY2940680. Although the SMO receptor shares the seven transmembrane helical (7TM) fold, most conserved motifs for class A GPCRs are absent, and the structure reveals an unusually complex arrangement of long extracellular loops stabilized by four disulfide bonds. The ligand binds at the extracellular end of the 7TM bundle and forms extensive contacts with the loops

    Controlling the passage of light through metal microchannels by nanocoatings of phospholipids

    Get PDF
    The flow of polarized light through a metal film with an array of microchannels is controlled by the phase of an optically active, phospholipid nanocoating, even though the coating does not cover the open area of the microchannels. The molecular details of the assembly (DPPC phospholipid monolayer/bilayer on a hexadecanethiol monolayer on a copper-or nickel-coated microarray) were determined using the infrared, surfaceplasmon-mediated, extraordinary transmission of the metal microarrays. Infrared absorption spectra with greatly enhanced absorptions by comparison to literature were recorded and used as a diagnostic for the phase, composition, and molecular geometry of these nanocoatings. This approach presents new tools for nanoscale construction in constricted microspaces, which may ultimately be useful with individual microchannels

    Abstract P-4: Robust Method for Background Subtraction in Serial X-ray Diffraction Data

    Get PDF
    Background: Membrane receptors play an important role in signal transduction across the cell membrane in all living organisms. Their structural studies have been enabled by multiple technological breakthroughs in their heterologous expression, stabilization, crystallization, and crystallographic data collection as well as in cryogenic electron microscopy (cryoEM). During the last decade, serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has enabled structure determination of previously inaccessible proteins, including several G-protein-coupled receptors (GPCR), that produce only micrometer-sized crystals, thus paving the way towards understanding their activation mechanism and rational drug discovery. In addition to experimental difficulties, membrane protein structure determination is also often accompanied by data processing challenges. In particular, the lipidic cubic phase that serves as a carrier for membrane protein microcrystals, as well as various XFEL beam-shaping devices may generate substantial background scattering that could complicate the structure factor extraction from the diffraction images. Methods: In this work, we tested an adaptation of the denoising algorithm via matrix decomposition to XFEL-SFX data. We benchmarked its performance using high-background data from PAL-XFEL and established its applicability to serial crystallography image denoising, as well as compared it to the CrystFEL-based image denoising algorithm. Results: We find that, although the decomposition-based image denoising does not outperform CrystFEL median subtraction, it performs better than the integration without any additional subtraction. We find the non-negative matrix factorization performing better than more traditional singular-value decomposition methods, both in terms of visual interpretability and final data quality. Conclusion: We hope that this work will draw attention to background subtraction methods in structural biology, and will pave the way towards processing of most challenging datasets in structural biology, in particularly, those collected from membrane proteins
    corecore